
The Artificial Emotion Project Handbook
Rev. 0.5b

Ronnie Vuine Joscha Bach

October 29, 2003

Contents

1. Introduction 5

2. Installation and Configuration 7
2.1. What you need . 7
2.2. How to install . 7
2.3. OS-specific issues . 8

2.3.1. Windows . 8
2.3.2. Linux . 8
2.3.3. MacOS X . 8

3. Advanced configuration 11
3.1. Isn’t it a plugin? . 11
3.2. The ComponentRunner . 11
3.3. aepconfig.xml . 11

4. Getting started 13

5. The AEP framework 15
5.1. Overview . 15
5.2. The Agent Adaptation API . 16

5.2.1. The MicroPsi development scenario 17
5.2.2. The MicroPsi flexibility test scenario 17
5.2.3. The MicroPsi application scenario . 17
5.2.4. The alternative architecture test scenario 18
5.2.5. The node net research/transfer scenario 18
5.2.6. The node net application scenario . 18
5.2.7. The framework-only scenarios . 18

5.3. Changing the world: Perceiving and taking action 18
5.3.1. World content . 18
5.3.2. Interaction and perception . 19

5.4. Writing a WorldAdapter . 19
5.4.1. Why write a WorldAdapter? . 19
5.4.2. Writing a WorldAdapter . 19
5.4.3. Pitfalls: WorldAdapters for node net agents 20

5.5. Using the RobotWorldComponent . 20

3

Contents

6. The User interface 23
6.1. Overview . 23

6.1.1. Some basic terminology . 23
6.2. The Mind perspective . 23

6.2.1. The MindEdit view . 24
6.2.2. The EntityEdit view . 27
6.2.3. The LinkageEdit view . 28
6.2.4. The IncomingLinks view . 28
6.2.5. The Library view . 28

6.3. The Admin perspective . 29
6.3.1. Overview . 29
6.3.2. The RawCom view . 29
6.3.3. The Log view . 29
6.3.4. The LocalSystemView . 29

6.4. The NetDebugPerspective . 30
6.4.1. The Parameter view . 30
6.4.2. The Log view . 30

6.5. The World perspective . 31

7. A closer look at native modules 33
7.1. Overview . 33
7.2. Creating a native module . 33

7.2.1. MicroPsi agent projects . 33
7.2.2. Creating the module . 33
7.2.3. Possibilities you have in native modules 34

8. Node net theory 37
8.1. Overview . 37
8.2. What node nets are . 37

8.2.1. NetEntities . 38
8.2.2. Nodes . 39
8.2.3. NodeSpace modules . 41
8.2.4. Native modules . 41

8.3. The mathematics of node nets . 42
8.3.1. Entities, Nodes, Node Spaces, Links 42
8.3.2. Specific node types . 43

A. The AEP Java API 45

B. Glossary 47

4

1. Introduction

Welcome to the AEP project, welcome to the AEP Developer’s Handbook.
As we’re now done with the formalities, you’ll be eager to get to know what this is all about:

AEP, the Plugin and MicroPsi. Well, at first glance, this is about an interesting plugin for IBM’s
excellent Java IDEEclipse.

At second glance, the AEP plugin is the entry point to a theory of mind, life, the universe and
all the rest (as some of us, always modest, realistic and away from clichés, like to put it). Using
the AEP framework and tools, you may be able to create intelligent software agents of unseen
quality and beauty. With the AEP Plugin you can create and control the minds of those agents,
watch them as they learn, interrupt and pause everything at any time, edit and watch the results.
You will, most important, get to know the theory behind all this: You’ll understand our approach
to some of the oldest questions in artificial intelligence (and philosophy of mind, indeed), and,
better yet, you’ll eventually learn about pretty good solutions for those problems. Well, perhaps,
at least. We hope to learn about them ourselves.

A word of warning: This handbook is meant to get you involved, to make you like what we are
doing and to put as much passion into this work as we do. That does not mean that there is going
to be too much hype here. But, as this handbook is directed at potential users of AEP/MicroPsi
technology, the handbook is clearly not as modest and calm as it would have to be if it were
directed to the scientific community. Shorter: You can’t judge the project by this handbook. But
you can become engaged by reading it.

What is the AEP (”artificial emotion project”)? It is a project at Humboldt University in
Berlin, dedicated to problems of artificial intelligence and cognitive science. We are mostly
computer scientists, but the project is interdisciplinary in its nature. What are we doing? We,
basically, create three kinds of stuff:Theory, agents, andtools. Theory, that isMicroPsi, a the-
ory on cognition and the things that need to be done to create truly intelligent software agents.
Agents, that is: Implementations of MicroPsi; and tools: That is the plugin and the framework
that will help you to create agents (and simulated worlds) with MicroPsi/AEP technology, and
that’s how it all fits together. You, if a newbie, will learn to use the tools first, then get a notion
of how our agents work, and as you understand the agents in more detail, you’ll get to know the
theory. Of course you can also do it the other way round, but then, unfortunately, you’ll have to
read this handbook back to front.

Anyway, what can you expect ? First, you will be shortly told how to install the system,
what you need to have in order to do so and what change you can make to the configuration.
There will also be some information on the configuration files in this second chapter, but in

5

1. Introduction

order to understand fully what you are doing with these files, you’ll need to know Chapter 5,
the framework overview. Chapter 4 is the ”Getting Started” part and mostly independent of the
rest of this handbook. If you already have installed your Eclipse AEP plugin and want to get to
know the system as fast as possible, read Chapter 4 now!
Chapter 5, as mentioned, explains the whole AEP system and architecture in a more detailed
manner. There’s much more to AEP than the plugin; the plugin is, in fact, only one of five
components. Don’t worry, the other components come and install with the plugin. Chapter 5
will also answer your questions regarding scalability and flexibility: Can you use AEP/MicroPsi
technology for purpose X, could you build it into a robot and if so, what would have to be done?
Chapter 6 explains how to create artificial minds with the mind editor. That’s cool, you might
think, and it is of course, but there’s no theory in chapter 6, it’s merely a description of the user
interface, what it is about and what you can do with it.
One of the most important things when writing a software agent with the AEP framework or
when working with an existing MicroPsi agent is understanding native modules. In Chapter 7
you’ll get all the information you need to find out what native modules are, why and when you
need them and how to write and use your own ones.
Chapter 8 tells you about node nets, the stuff all agents in AEP are made of: What node nets are,
what’s in there, and how, precisely, these nets do work.
At the end of this handbook, you’ll find a glossary with all the terminology you’ll come across
when reading the handbook. Use it a lot. Not only it will help you to understand AEP, it will
improve communication with other AEP people a lot if you know the terminology and use it
precisely. There are also appendices with web links, recommended reading and entry points for
the JavaDoc pages of the AEP source base.

6

2. Installation and Configuration

2.1. What you need

Here’s what you need for a basic setup, and where to get it:

• Eclipse. Eclipse is available, for free and for many platforms including Mac OS X, Linux
and Windows from the website of the Eclipse project http://www.eclipse.org. This down-
load is of about 60 megabytes in size (You need the SDK version).Although the Eclipse
Project is making good progress towards Eclipse 3.0, we generally don’t recommend
the 3.0 Milestone builds. The AEP toolkit is designed to work with the current release
Version of Eclipse, 2.1. More recent milestones are likely to work, but our toolkit has
not been tested against the 3.0 trunk, and all information in this handbook refers to
Eclipse 2.1)

• The toolkit, which is downloaded automatically on installation. (see below)

• You may want to try our early implementation of a MicroPsi agent, available at our
download page: http://www.artificialemotion.de/download

2.2. How to install

This is how to install the toolkit, including the complete framework and all components:

1. Extract eclipse and put it somewhere where you like to have your programs. If you’re
on windows and wonder if there is no registry-fiddling to be done: No. No installation
needed. Start Eclipse!

2. Go to Help→ Software Updates→ Update Manager.

3. At the bottom left, create a new Site bookmark by right-clicking and selecting New→
Site bookmark

4. Give the site a name, e.g. ”AEP Update Site”. The URL is
http://www.informatik.hu-berlin.de/˜bach/artificial-emotion/update
Leave the site type as it is, for the site is an ”Eclipse Update Site”.

5. Select the site, open it, open the ”Toolkit” entry and double-click the ”aeptoolkit” entry.

6. You now already see our logo - click ”Install” and the wizard will guide you through the
rest of the setup process.

7

http://www.eclipse.org
http://www.artificialemotion.de/download
http://www.informatik.hu-berlin.de/~bach/artificial-emotion/update
http://www.informatik.hu-berlin.de/~bach/artificial-emotion/update

2. Installation and Configuration

Note that, as you have bookmarked our update site, you can check back there for new versions
of the toolkit whenever you feel there should be such - or someone told you that that is the case.

You now have installed the toolkit. The four AEP perspectives ”Admin”, ”World”, ”Mind”
and “NetDebug” can be opened in Eclipse’s perspective selection dialog (Window→ Open per-
spective→ Other). You should customize these to your needs now.

To install the agent, perform the following steps:

1. Open the Java perspective

2. Select New→ Project→ MicroPsi agent project, name it ”simpleagent”, Finish.

3. Right-click the project, select ”Import”

4. Import the ZIP-file: simpleagent.zip (get it from our website!).

5. Go to the Mind perspective, select the ”Load agent state” button.

6. Select state initial - done.

2.3. OS-specific issues

2.3.1. Windows

Currently none. We advise to use the Eclipse 2.1 stream.

2.3.2. Linux

Releases are not tested under Linux, however, many users report that it works fine. Reports also
say that the Linux version’s speed is much dependent on which VM (IBM or Blackdown) you
use, on the Widget system and that it also depends on – ehm, many other things. But if you’re
using Linux for development, you like to play around with that stuff anyway, so just go ahead...

2.3.3. MacOS X

Although there is support for OSX, you will encounter some minor problems. By default, even
the most recent Eclipse versions use Java 1.3.1 on the Mac. Our plugin won’t start without Java
1.4.1. So, besides that you need to have it installed, you’ll also need to tell Eclipse to use it. If
you’re using the 3.0 Milestones (which we recommend on OSX because SWT support is much
better in the 3.0 stream), you can change the VM version in Eclipse’s parameter array in the
Info.plist file. (Inside Eclipse.app).

There’s more trouble: SWT and Java 1.4.1 have a problem with color and font dialogs. So

8

2.3. OS-specific issues

DONT open one, Eclipse will hang if you do. You can still switch back to 1.3 to change fonts
and switch back afterwards.
The hanging color dialog is more annoying, though. Especially when you’re using the Param-
eterView of the plugin on the Mac – remembernot to click ”Change color”. We have added a
workaround for changing the color: You can double-click the color field and enter the rgb value
numerically. The Eclipse and Apple people are working on this, there’s nothing to do but to pay
attention and wait.

9

2. Installation and Configuration

10

3. Advanced configuration

TBD.

3.1. Isn’t it a plugin?

No, it isn’t. The AEP system is used (and started) by one of our Eclipse plugins, which itself is
only one of thecomponentsof the system. The fact that the AEP system runs inside Eclipse’s
VM (and inside the scope of the plugin’s classloader) is just a consequence of the default all-
in-one setup. In principle, you can run each component in it’s own VM on it’s own computer.
Some restrictions apply to console components – these are only able to edit an agent’s mind if
in the same VM with the agent component.

For a detailed description of what components exist and how many of them may be within
one system see the ”AEP Framework” chapter. TBD

3.2. The ComponentRunner

TBD.

3.3. aepconfig.xml

TBD.

11

3. Advanced configuration

12

4. Getting started

In a later version of this document, you will find here a step-by-step introduction to editing node
nets and getting a simple agent up and running.

13

4. Getting started

14

5. The AEP framework

5.1. Overview

What we call ”framework” is divided into two major parts: Thesystem framework and the
agent framework. The system framework is a flexible way of a putting one or more agents into
a situation, of controlling and managing the agents and everything that is needed to keep ’em
running, even distributed over more than one computer: You can run virtually every component
separately, connecting the whole system over HTTP.

• One or more agent components.

• A world component. The world provides perception and executes the agent’s actions. The
default implementation of the world component is a simulated a-life environment, but a
replacement for this could be any interface to any reality.

• A timer component

• A component called ”server” for routing data between the other components

• Console components, for interacting with the system

The following diagram shows the system framework with all components. The components
in light grey are facultative and not necessarily part of the framework. (For explanation of the
notation used see [3])

15

5. The AEP framework

Any of these component can be replaced independently, if the replacements implements the
protocols in a proper way - the AEP system protocol is not documented in this handbook, but
we can provide that information if you’re seriously planning something interesting.

The agent framework allows the embedding of various types of agents into the system frame-
work, MicroPsi being one of them (and currently the only one). The agent framework defines
how agents receive and send information and what immediate surroundings there are for agents,
both technically and in terms of embodyment.

5.2. The Agent Adaptation API

We tried to make the agent framework as flexible as possible. Our goal is to enable you to use
the AEP infrastructure for world/agent communications in virtually any context. Agents defined
and implemented within the AEP framework are applicable in many environments. Depending
on the type of environment, the agents must be modified and adapted in different ways.

To achieve that, we defined three ”levels of flexibility”:

• Agent implementationTrivially, agents can be adapted to worlds within their implemen-
tation. Our only implementation of the AEP AgentIF interface, the MicroPsi agent, can
easily be replaced by some other implementation, if you want to use the AEP framework,
but are not interested in MicroPsi.

• AgentWorldAdapter Any AEP agent implementation, including the MicroPsi agent, can
be interfaced to any type of world by using AgentWorldAdapters. World adapters are Java
classes that translate the world’s ”language” into that of the agent. In MicroPsi agents,
the adapters provide the DataSources for sensors and DataTargets for the actor nodes -
depending on the type of world the agent is supposed to live in.

• WorldComponent / RobotWorldComponent By default, our WorldComponent simu-
lates a world for the AEP agents to live in. But it is also possible to replace the WorldCom-
ponent with a RobotWorldComponent, an interface that creates AEP perception messages
from a ”real” environment, such as the web, a text document, camera image, odometry,
infrared sensor or what have you. It also can receive action messages from AEP agents
and execute it by accessing real actuators.

16

5.2. The Agent Adaptation API

Of course the distinction between simulated and real environments is somewhat artificial -
how much more real is the web than a simulated island? ”Real” environments are simply re-
ferred here as ”real” because (and if) there are connections to something outside the AEP system.

Assume you want to use the AEP framework for deploying an agent into some environment
- what kind of modification would you have to make to the system? – That, obviously depends
on the environment and the type of agent you want to use. The following table defines possible
scenarios.

Our A-Life
simulation

Other simulated
environment

Real environment

Our MicroPsi agent default, the
MicroPsi

development
scenario

the MicroPsi
flexibility test

scenario

the MicroPsi
application scenario

Custom
(MicroPsi-type)
node net agent

the alternative
architecture test

scenario

the node-net
research/transfer

scenario

the node-net
application scenario

Custom AEP agent the alternative agent
test scenario

the framework-only
research/transfer

scenario

the framework-only
application scenario

Table 5.1.: The AEP scenario matrix

5.2.1. The MicroPsi development scenario

Obviously, you don’t need to adapt or customize anything. That’s the configuration we use for
developing our agent. That means that the scenario is - at least currently - very much Dörner-
like and surely academic. We make - and change - assumptions on how our simple A-Life
environment looks and works just as we think these assumptions are suitable for the development
of a general cognitive architecture.

5.2.2. The MicroPsi flexibility test scenario

Changes would have to be made to the simulated environment, and a suiting WorldAdapter
would have to be written. We consider it too early to transfer MicroPsi agents to other simulated
environments at the current stage of development.

5.2.3. The MicroPsi application scenario

The RobotWorldWomponent would have to be used, along with a suiting, newly developed
WorldAdapter. We consider it too early to transfer MicroPsi agents to real-world-scenarios at
the current stage of development. Anyway, this is a hot topic for the future.

17

5. The AEP framework

5.2.4. The alternative architecture test scenario

This would mean to develop an alternative node-net-agent, and that is easy and involves noAgent
Adaptation APIusage. We have no plans to do so ourselves, but surely there’s people out there
who would like to implement their own architectural ideas and compare their results to ours.
This could also involve alternative D̈orner-style agents that, possibly, stick more strictly to the
theory from theMechanik[5]

5.2.5. The node net research/transfer scenario

This is likely to be a very common one, as node nets are a very flexible formalism. In this
scenario, changes to the virtual environment would have to be made, again along with a suiting
WorldAdapter, and additionally a node net agent would have to be developed. There are people
in our group that are doing exactly that, implementing Braitenberg-vehicles with node nets. [7].
There’s also thought about using node nets in a more connectionist manner than in the standard
MicroPsi agent and exploring the neural-net possibilities of node nets.

5.2.6. The node net application scenario

This is very similar to the previous one, but would involve the use of the RobotWorldComponent.

5.2.7. The framework-only scenarios

These are, to us, not the most interesting ones, at least at the moment. Although the framework
is meant to be usable without all the MicroPsi/node net stuff, we ourselves have no interest in
doing so. Still, if someone should be interested in our infrastructure simply for architectural
reasons, maybe looking for a framework that allows a distributed multi-agent-a-life-simulation:
You’re welcome, we look forward to hear from you. (A word of warning: The distribution
aspect of the whole thing is, although already implemented, not quite the focus of our work at
the moment and hasn’t been extensively tested.)

5.3. Changing the world: Perceiving and taking action

Changes to the wold influence what actions are available to the agent and what it perceives if it
asks for perception. Depending on what kinds of objects are inside the world and what kinds of
agents are supported, the world can be of very different complexity. (Ranging from worlds with
only two lightbulbs and the action ”setwheelspeed” to complex A-Life simulations with different
kinds of agents with different sets of actions). In principle, there are two ways to modify the
world: Modify thecontentsof the world or themeans of interaction and perception.

5.3.1. World content

You can add simple ”dumb” objects just by creating them in the UI’s world editor. There’s also
a possibility to add more sophisticated objects that implement some behavior. But as there’s still

18

5.4. Writing a WorldAdapter

a lot of ongoing development in that field, we decided to document the procedures for doing so
in a later version of this document.

5.3.2. Interaction and perception

The agent’s mind is calculated in aagent component. But, inside the world component, some-
thing must execute the actions that were create by the agent’s mind and create the perception that
the agent’s mind requested. This is done by an ”agent object” inside the world component. Note
the difference to AgentWorldAdapters: The latter adapt agent mindss to existing agent objects.
Agent objects themselves don’t adapt or translate actions/percepts, theydefinethem.

There is one default implementation of an agent object, called the ”SteamVehicleAgentOb-
ject”. It currently defines themove, eatanddrink actions and object-based percepts.

When implementing a new agent object for an agent with different kinds of interaction and
perception, you’d have to do the following:

• Extend AbstractAgentObject. (See Appendix A for complete classpath and apidoc link.)

• implement the method getPerception(). The object you have to return from this method
must contain the percepts that the agent is to receive after requesting perception data. You
can retrieve these percepts in some way or another from the world. You can access the
world via the member field ”world”.

• implement the method handleAction(MAction action, WorldObjectIF targetObject). You
should perform the requested action in the implementation, that is:actually do something
to the world. After all the translating and routing, this is the place where actions are really
executed. Implementations must return a response object containing the success of the
action and, if appropriate, body parameter changes that are direct results of the action.

5.4. Writing a WorldAdapter

5.4.1. Why write a WorldAdapter?

Whenever you want to use an existing agent with a new world, or a new agent with an existing
world, or both, you need to write a WorldAdapter. By writing a world adapter, you’re providing
the agent and the world with exactly the logic they need to interact, nothing more, nothing less,
but especially all the technical details are wrapped away into the AEP framework.

5.4.2. Writing a WorldAdapter

How a world adapter looks largely depends on what the world and the agent look like. In any
case, you need to do the following:

• Implement AgentWorldAdapterIF. — An instance of your implementation will be used to
access the agent controller and the action/percept translators you implemented.

19

5. The AEP framework

• Implement AgentControllerIF — Used for non-action-non-percept-specific communica-
tion with the agent.

• Implement any number of ActionTranslatorIFs — Every action translator describes what
kind of message is to be sent to the world when the action is executed, and all translators
together decide which action will be sent to the world.

• Implement any number of PerceptTranslatorIFs — Every percept translator describes how
percept data from the world is to be fed into the agent.

• Implement any number of UrgeCreatorIFs — Urge creators can be used to create urges
for the agent, especially if these depend on perception or body data. You must not use
UrgeCreatorIFs for the agent’s urges, but it is good practice to do so, because if urges are
part of a world adapter that they depend on logically, they are added and removed with the
world adapter.

• Add your world adapter to the ”worldadapters” section of the agent’s configuration. (In
aepconfig.xml) — for more information on aepconfig.xml, see the chapter on advanced
configuration.

5.4.3. Pitfalls: WorldAdapters for node net agents

WorldAdapters for node-net-based agents are, of course, of special interest. There are some
pitfalls due to the fact that the internal timing of the node net and the timing of the aep system
are not in sync. (Node nets can even be in suspend mode while the rest of the simulation goes
on). Especially the action translators need to make sure that actions are only sent once when an
actor node went on and that their data target (where the actor node writes its activation) is reset
after the action was sent andbeforeresetting would mean dropping activation for a possible next
action.

To ensure that these ugly technical details don’t bother you too much, the MicroPsi agent
comes with a default ActionDataTarget implementation that you should use when implementing
your translator. Have a look at the translators for our (default) island world for information on
how to use the ActionDataTarget class.

5.5. Using the RobotWorldComponent

To set up a RobotWorldComponent, you need to do the following:

• Implement RobotActionExecutor. — Your implementation will receive actions from the
agent that are to be executed in the real world. What actions you can receive here obvi-
ously depends on what WorldAdapter the agent uses.

• Implement RobotPerceptionExtractor. — Your implementation will have to provide per-
ception data here. Again, what kind of perception the agent can use depends on the agent’s
WorldAdapter.

20

5.5. Using the RobotWorldComponent

• In aepconfig.xml, change the ”class” entry of the world component to
de.artificialemotion.comp.robot.RobotWorldComponent

• Change (or add) the ”executor” entry in the world section of aepconfig.xml (as a sibling
of the ”class” entry). As value of the executor tag, enter the full qualifying classname of
your RobotActionExecutor.

• Change (or add) the ”extractor” entry in the world section of aepconfig.xml (as a sibling
of the ”class” entry). As value of the executor tag, enter the full qualifying classname of
your RobotActionExtractor.

21

5. The AEP framework

22

6. The User interface

6.1. Overview

This chapter covers the user interface of the Plugin: How it works, how to use it and what’s
behind all the widgets and buttons.

6.1.1. Some basic terminology

In order to understand the following, you need to know what perspectives, views and widgets
are in Eclipse. The explanation is very brief, if you want or need more information: read the
Eclipse documentation [1], it is, although somewhat sparse on other topics, very good in the
basics. Here we go:

Widgets When you look at an open Eclipse window, everything you see is a widget. As
that information doesn’t help you a lot, here are some examples: Buttons, Lists, Trees, Text,
Windows, basically everything you can distinguish. It’s that easy.

Views When you look at Eclipse, you’ll notice that the whole window is partitioned into
smaller areas, each with a title bar, separately scrollable and resizable. These are called views.
By the way: You can expand views to full-size by double-clicking the view’s title bar.

PerspectivesAn assembly of views into something that makes sense in some way is called a
”perspective”. You can add views to perspectives or remove them if you want, but normally the
people that made up the perspective knew what they were doing.

6.2. The Mind perspective

The Mind perspective contains six views and the editor area. There’s theMindEdit view, the
EntityEdit view, theLinkageEditview, the IncomingLinksview, theLibrary and the task list.
You might also want to add theLogViewview by selecting Window→ Show View→ Other→
AEP→ LogView.

The MindEdit view is the ”main” view of this perspective, as the whole perspective is about
manipulating the relations and states of entities. When you select an entity in the MindEdit
perspective (you click it or draw a frame and it becomes blue), the EntityEdit view will update
it’s content and show information on the selected entity. If you select a gate in the EntityEdit
view, the LinkageEdit view will be updated and show information on the gate and the links
attached to it. You can also select single links directly. By using the “copy” modifier while
dragging selected entities around, you can create clones of that entities.

The Library can be used to store fragments of node nets. Just select a group of entities in
the MindEdit view and Drag’n’Drop it to the Library by using the “Copy” modifier, on most

23

6. The User interface

systems the Ctrl-Key. Having dropped a group of nodes in the Library, you will be prompted
for an name for the new entry. After that, you can copy the nodes back to any nodespace at any
time by simply dragging it there.

The task list can be used to memorize things. Okay, you never forget something, but: Don’t
remove it before you were told that eclipse puts compiler errors, warnings and code marked
with a ”todo” there. It’s useful, really. The editor area contains the editors that appear when you
double-click a native module in the MindEdit view.

If you added the LogView, you can watch log messages that come in from different loggers.
Each AEP component has its own logger. You’ll probably be particularly interested in the logs
from the agent - not only because the framework outputs messages there; when you write your
own native modules you can add code that outputs data to that logger - this is extremely helpful.

6.2.1. The MindEdit view

When you look at the MindEdit view, you’ll see boxes and colored lines connecting them. The
boxes are entities, the lines are links. You can drag around the boxes, select or deselect them or
open a context menu. Right-clicking is, in general, a good idea in the MindEdit view. Entities
have context menus, as well as the background has. (The ”background” is also an entity, the root
node space of the net, but don’t care about that for now.)

To understand what the colors mean, you need to know this rules:

• Black links have positive weights.

• Blue links have negative weights.

• Green links are currently propagating activation. (Which means that they are attached to
an active gate and will propagate the gate’s activation to the linked node in the next cycle.)
The greener the link, the higher the activation.

• Red links are currently propagating negative activation. (Either because of a negative gate
activation or a negative weight at the link.)

• Green entities are active. The greener the node, the higher the activation.

• Red entities are active with negative activation.

To understand where links originate and end on default node types, you need to know this
rules:

• GEN links originate from the node’s “title bar”

• Links ending in a node’s title bar end in the GEN gate.

• Links originating or ending on the node’s horizontal axis are POR/RET links.

• Links originating or ending on the node’s vertical axis are SUB/SUR links.

• Links on the lower-left to upper-right diagonal axis are CAT/EXP links.

24

6.2. The Mind perspective

• Links on the lower-right to upper-left diagonal axis are SYM/REF links.

Don’t be scared, don’t learn this by heart, it’s really quite intuitive when you are familiar with
what all this means and have used the editor for a while.

Background Pop-Ups

Create NodeCreates a node in the current nodespace. Hovering this will open another popup
with the types of nodes you can create.

Create Module Creates a new module. Hovering this will open another popup from which
you can choose if you want to create a NodeSpace (this one will be created immediately) or
a NativeModule (will open the wizard in which you choose the implementation for the new
module).

Set node detailYou can choose here between the default node display style and the old looks
that used color-coded links.

Draw links Here you choose which links will be displayed. The default, ”all”, draws all
links. This can be quite annoying and slow and messy if there are really many entities with lots
of links, especially when running the net. If too many drawn links are disturbing you or slowing
the agent down, try one of the other options: ”None” draws no links at all, ”Selected Only”
draws only links of entities you selected, ”Dragged only” only draws links of entities that you
drag around.

Auto-align Chose an align strategy to be applied to all entities in the current nodespace. This
strategy will be applied immediately, and the affected entities will be positioned.

Search nodeOpens a dialog for searching entities by ID or by name.

Space propertiesOpens a dialog with the properties of the current node space.

Save graphicsLets you select a location for saving the current nodespace as a bitmap. The
file will be quite large and is rendered in memory, so be a bit careful if you’re short on RAM or
have a huge nodespace.

25

6. The User interface

Entity Popups, standard nodes

Link Lets you first select the type of link you want to create (depending on the gates you have
at the entity), then you can draw the link to a slot of the entity you want to link, if the targeted
entity is in the same nodespace. If not, you’ll have to use the Create-Link wizard.

Link wizard Opens the Create-Link wizard.
Edit With standard nodes, this does nothing.
DeleteDeletes the entity.
Send to backSends the entity to the back.
Bring to front Brings the entity to the front. z-axis information is not made persistent cur-

rently.

Entity Popups, sensors/actors

All except “Change data connection”See standard nodes section.
Change data connectionThis opens a wizard that lets you select and activate the data con-

nection (source for sensors, target for actors) for the node.

Entity Popups, nodespaces

All except the “Create... ” entries See standard nodes section.
Create SlotOpens a wizard that lets you create a slot for the nodespace. When creating a slot

at a nodespace, a new sensor data source is generated. (So you can read the slot’s value from
inside the nodespace by a sensor).

26

6.2. The Mind perspective

Create GateOpens a wizard that lets you create a gate for the nodespace. When creating
a gate at a nodespace, a new actor data target is generated, so you can write to that gate from
inside the nodespace).

Entity Popups, native modules

Default entries except “Edit” See standard nodes section.
Inner statesOpens a dialog that lets you edit the inner states of the module - if the module

defines inner states. Not that these are untyped – you can enter strings where the module expects
numbers, causing the module to reset the inner stat to zero without warning.

Edit Opens the java editor for the implementation. (same as ”Edit”)
Auto-update If you enable this, the implementation of the module will be replaced by the

newest version every time a new version of the implementation class is compiled. The replace-
ment will try to preserve linkage and inner states of the module (only if the ”innerstate” object
is used, of course.). Normally, a new class will be compiled by Eclipse every time you save
the corresponding source file. However this is only the case if Eclipse’s autobuild-preference is
enabled.

Note that there is an Eclipse bug that turns off this preference sometimes. So if you edit
your source file, save, run the net and find that mysteriously nothing has changed – check
if autobuild is still on.

6.2.2. The EntityEdit view

At the EntityEditView, you can change standard properties of entities. Currently, this means
you can alter the name of the node. You can also select a gate or slot in order to access it’s
properties and links in the LinkageEditView/IncomingLinksView.

27

6. The User interface

6.2.3. The LinkageEdit view

At the LinkageEditView, you can change gate parameters: Select the row of the parameter
you want to alter, then click the value itself. If you enter unacceptable values, the displayed
value will simply be the same as before when you leave the row.

You can also select and right-click one of the links in the list, that gives you the option to
delete the link, change the link’s parameters, bring the linked node to front or look up the node,
if it is in a different nodespace or otherwise different to locate.

6.2.4. The IncomingLinks view

The IncomingLinks view is very similar to the LinkageEditList, besides that, as the links listed
there are incoming links and hence attached to slots, there are no parameters to edit here. (Slots
don’t have any parameters.) So what you see is simply a list of links attached to the selected
slot.

6.2.5. The Library view

28

6.3. The Admin perspective

The Library contains node net fragments that can be dragged into the mind edit view. You can
create new library entries by dragging groups of entities from the mind edit view to the library.
(In both directions, you need to use the “copy” modifier, on most systems the Ctrl key). You can
delete entries or add a description by right-clicking it.

Note that the the Library view can be useful not only for storing “building blocks”, but also
as temporary storage when moving structures between nodespaces.

6.3. The Admin perspective

6.3.1. Overview

In brief, the admin perspective lets you take a look into the technical details of a running AEP
system (system framework). You can here perform most of the actions that the UI performs in a
more low-level manner. The most important view in the admin perspective is the RawCom view,
where you can send what we call ”questions” and receive answers.

6.3.2. The RawCom view

The RawCom view allows you to interact directly with running AEP components: You can
access all functionality that the components expose to the outside. This is done in a ques-
tion/answer metaphor: You ask questions to the component, the component provides answers.
When posing a question, you give details on how often and when you want your answer and
what additional information you want to send along with your question. The question is then
routed to the addressee, answered and the answer is returned to you (the user of the console
component) and finally the answer(s) get(s) displayed.
Needless to say that you should be knowing what you are doing when posing questions. There
is currently no detailed documentation of the questions exposed by the default components, and
no plans were made to create such documentation. Again, if you really want to replace one of
the components and expose functionality via questions yourself, contact us directly.
For the rest of you: You will hardly ever need the RawCom view, as there is good UI for most
of the functionality. One question, though, has proven extremely useful: Thegetrunnerlog

question displays the logfile with the stack traces of all exceptions.

6.3.3. The Log view

The log view contains the same information as the log file, but updates immediately when some-
thing is logged and displays it neatly sorted by loggers (There is one logger for each running
component.)

6.3.4. The LocalSystemView

The LocalSystem view is currently of no use at all. In the future, this is the place where you will
be able to set up AEP systems in a point-and-click-manner, without having to edit xml files and
the like. But there’s a long way to go.

29

6. The User interface

6.4. The NetDebugPerspective

Debugging Node net agents isn’t at all easy. While the implementation of native modules is nor-
mally somewhat straightforward and does not involve complex call structures, threading issues
or any other of the hellish things that make debugging a tough task normally, the net itself is
a beast in itself: Once there is activation on some entity that you simply don’t know where it
comes from and why it is there at that very moment you don’t want it - you are in trouble. And
this is a common situation.
There is hope, though. There are some debug mechanisms. As the node net run inside the same
VM as eclipse itself, we clearly can’t offer a real code debugger - but mostly, that’s not what you
would want anyway, messing around with net internals. Typically, debugging a MicroPsi-style
agent poses two questions:What does my native module do?andWhat about that activation at
node XYZ?

6.4.1. The Parameter view

At the parameter view, you can watch the output of any gate in the net as it develops through
time. To add a ”monitor” to some gate, simply right-click it at the EntityEdit view, choose a
color and give it a name. The real output of that gate will now be shown in the parameter view.
You can monitor as many gates as you like. – This has shown to be extremely helpful: At a
glance, you see the values of those variables that matter.
You can use this view to track down ”ghost” activation (activation that shouldn’t show up where
it does) by following the links backwards, add monitors to the linking gates and finally find out
where the activation comes from.

The parameter view can do more than that. Currently, there are only monitors for gate acti-
vation, but we’re thinking about providing monitors forcountinglinks at some gate, monitoring
inner states of native modules and monitors for various other parameters.

6.4.2. The Log view

As said in the admin perspective section, every component has it’s own logger. As each agent
is a component, it has a logger. And this logger can be accessed from inside native module
implementations: logger.debug(”Hello world”);

30

6.5. The World perspective

Use this for your debug output in native modules. The log view shows that debug output. The
color of the text indicates the log level. Black is ”debug”, green is ”info”, blue are warnings, and
red tones are errors.

6.5. The World perspective

The world perspective is self-explanatory. They say. Still.

31

6. The User interface

32

7. A closer look at native modules

7.1. Overview

Native modules are entities just like the other types, with one major difference: When calculating
the values of their gates from those of the slots (when the net is calculating the state of its next
step), native modules can set the gates to whatever values they want and even manipulate the
rest of the net in every possible way. To put it different: Native modules can perform any action
every step, any action implemented natively, that is: in Java.

7.2. Creating a native module

7.2.1. MicroPsi agent projects

Native modules are normal java classes. But to be able to create and use them, some conditions
must be met: Some libraries must be included, and the native module must be located at a
particular location within the package tree.
There is a wizard that will set up an Eclipse project for you so you don’t have to do the setup
yourself. Select New→ (Other→) Project→ Java→ MicroPsi agent project. You then only
need to give the name of your project, then press finish. The resulting project will contain the
appropriate libraries (with source attachments, so you have JavaDoc and parameter names) and
a package where you can create your native modules.

7.2.2. Creating the module

To create a native module, open the standard Eclipse Java Perspective, open your MicroPsi agent
project and create a new class. You must place the new class somewhere below
de.artificialemotion.micropsi.modules so the system finds it afterwards. As super-
type, the class must have
de.artificialemotion.micropsi.net.AbstractNativeModuleImpl . Having created
the class, fill out the auto-generated method stubs until all compiler errors are gone. You have
now created the implementation of the module, go back to mind perspective now and create a
new native module (by right-clicking the background or directly by choosing the wizard). The
wizard will ask you for an implementation for the new native module, and you can now select
your class from the project you placed it in. After the wizard has done its work, your new native
module is in the net. By double-clicking it, you can open the implementation code and modify
it. If you enable ”implementation auto-replacement” in the context menu of your native module,
the module will be updated with your latest code every time you save the implementation’s java
file. By the way: If you ever encounter an ugly red cross on your native modules, that means

33

7. A closer look at native modules

that your implementation had uncatched Exceptions. Stacktraces and error messages will be in
the agent’s logfile.

7.2.3. Possibilities you have in native modules

In a native modules’calculate(...) method, you can do whatever you want to. You proba-
bly will either want to calculate new gate values from the modules’ slots or change something in
the net’s structure. Well, you can do both quite easily. For such tasks, the implementation super-
class already has instances of classes that provide APIs for manipulation of activation, structure,
persistent values and logging. Here’s more details on these four objects.

Changing gate parameters: The GateManipulator

An instance of GateManipulator is passed as second argument to the calculate-Method every
time it is called. With the gate manipulator, you can:

• Set the activation of one of the native module’s gates for the next step

• Change any of the other gate values permanently: maximum, minimum, threshold, gate
factor, amp factor.

• Create links from one of the native module’s gates to a slot at any entity or unlink gates.

For a more detailed description of what the GateManipulator does, see the JavaDoc for Gate-
Manipulator: GateManipulator.html

Changing net structure: The StructureModificator

Then, there is the structure modificator object. It is a protected instance in AbstractNativeMod-
uleImpl, so you can access it anywhere in your module. It is reachable viathis.structure .
Using the structure object, you can:

• Create or delete Concept nodes

• Get GateManipulators for other entities

• Create or drop links between entities

• Activate entities

• Get the sibling entities of the native module and the parent space

• Find an entity instance by the entity’s ID

For a more detailed description of what the StructureModificator does, see the JavaDoc for
StructureModificator at AbstractNativeModuleImpl.StructureModificator.html

34

http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/net/GateManipulator.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/net/AbstractNativeModuleImpl.StructureModificator.html

7.2. Creating a native module

Maintainig inner states: The InnerStateContainer

As the StructureModificator, the StructureModificator object is a protected instance in Abstract-
NativeModuleImpl, so it’s accessible viathis.innerstate . With the InnerStateContainer
object, you can publish values from the implementation to the Eclipse UI, so users can see and
change them as the net is used. Published values inside the InnerStateContainer are also persis-
tent. This means that after saving and loading the net, the inner state of the module will be the
same as before - if you put all your important variables in there. To do so, store the values at the
end of thecalculate(...) -Method in the innerstate object (via one of thesetState(...)

methods) and read them at the beginning of the method. (Via thegetState(...) methods).
For a more detailed description of what the InnerStateContainer does, see the JavaDoc for

InnerStateContainer at InnerStateContainer.html

Logging

And finally, there’s a logger, accessible viathis.logger . Log messages will appear in the
agent’s log file and on the LogView. You can uselogger.debug(Your message here); at
any time in your native module.

The logger object is an instance of an Apache Log4J logger. JavaDocs can be found at the
Log4J website. [2]

Naming slots and gates

There’s one more thing you will want to know: When you define your slots and gates in the
getSlotTypes() and getGateTypes() methods that are called on module initialization,
you do this by returning ints. This is fine for the net, but when looking at the module in the
Mind view, it would be much nicer to have names at the slots and gates than presenting just
numbers. There’s a way to add translations to your slot and gate type numbers: The Type-
Strings registry. By calling the static methodde.artificialemotion.micropsi.main.

TypeStrings.activateExtension(...) and passing an instance of TypeStringsExten-
sionIF (from the same package), you can give the UI the information it needs.

If you want to know more about the TypeStrings class and how to use it and hownot to use it,
look at the JavaDoc page for TypeStrings: TypeStrings.htmland the TypeStringsExtensionIF.

35

http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/net/InnerStateContainer.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/main/TypeStrings.html

7. A closer look at native modules

36

8. Node net theory

8.1. Overview

This chapter provides more information on node nets, the inner structure of MicroPsi agents, the
theoretical stuff they are made of. There are detailed verbal descriptions of everything related to
node nets in the following sections, and, at the end, there will be a more formal definition of all
this.

8.2. What node nets are

As a starting point: Here’s the entity relationship diagram of node nets:

37

8. Node net theory

8.2.1. NetEntities

As you read from the diagram, nearly everything in a node net is aNetEntity. NetEntities are
connected byLinks, which originate atGatesand end inSlots(Slots and Gates being part of the
NetEntities). Each cycle, NetEntities calculate their gates from the values of their slots and then
propagate the activation along the links into the slots of linked entities.

Links

Links can be established between two NetEntities, attached to their origin at a gate and at their
end at a slot. Links have, in their standard form, two attributes: aweightand aconfidencevalue.
Both values are used multiplicative in the activation propagation process, but they are treated
slightly different: Links with weightw = 0 will be removed by the net, while the value of the
confidence attribute has no such effect.

We speak of NetEntitiesa andb as beingconnectediff there is a Link from one of the gates
of a to one of the slots ofb. a andb can be identical.

Slots

Slots are the points where incoming links are attached to NetEntities. During activation propa-
gation, the values of all connected gates will be added to one value at the connected slot. (The
value of the slot is simply a sum of all incoming activation). During gate calculation, when
native modules are calculated, you can access the slot values and calculate your new gate values.

Gates

Links originate from gates. Gates can have more than one link attached to them. There are
various parameters at gates that control how activation will be propagated:

• Activation - the gate’s activation from the last activation propagation/gate calculation cycle

• Threshold - activation will only be propagated along the gate’s links if it exceeds the
threshold. The threshold value will be subtracted from activation before propagation.

• Maximum - the maximum activation that may be propagated from this gate. This does
not mean this is the maximum activation reaching a linked node’s slot: the gate parameter
amp is multiplied to the activationafter the check for the maximum, and of course the
weight and confidence values of the link itself are multiplied after all that.

• Minimum - the minimum activation that may be propagated from this gate. Note that,
after the creation of a NetEntity, is 0 by default, and that means that the gate will not
output negative values.

• Amp factor - this factor is multiplied to the gate’s value after all other checks, directly
before activation propagation.

38

8.2. What node nets are

• Gate factor - this factor is multiplied to the gate’s value before all other checks. It is
mainly meant to turn the gate on or off and is used by the directional activators to do so.
You normally should have no reason to interfere with what they are doing, so it’s good
practice to leave the gate factor alone.

• Decay type - A code for the kind of decay that the links at this gate are subject to. -1, the
default, means that there will be no decay. We will provide more information on decay
functions as we add them. Currently, there is only one more decay function, (code 1),
a simple linear decay: Every step the link weight is reduced by 0.05.Note that decays
are computed only when the Entity is used. You won’t see the weights changed until
the links have been used in activation propagation. We do this to avoid iterating over
a large number of entities every cycle, and of course it’s mathematically ok to do so. So
don’t be confused.

8.2.2. Nodes

Nodes are standard NetEntities that have exactly one slot (STGEN), at least one gate (GTGEN)
and a fixed gate calculation function that simply puts the slot activation into all of the gates.
Nodes are the standard building blocks of MicoPsi agents. You could build your agents com-
pletely with nodes, without caring about native modules. As you will already have noticed from
what you know about gates, nodes can be used as neurons in neuronal nets, and that already
makes them interesting. But with the different kinds of nodes introduced now, you’ll find you
can not only compute simple logical functions, but write real programs entirely with nodes. You
normally won’t want to do so, but you could.

Register nodes

Register nodes are the most basic node types. One slot, one gate. As the name indicates, register
nodes are used for passing ”parameters” between native modules or to keep links to concept
nodes. There are special methods for quick link manipulation at register nodes at the APIs for
native modules.

Concept nodes

Concept nodes are nodes that have, besides their GTGEN gate, a number of standard other
gates. These standard gates add meaning to the attached links: The type of the gate that is used
for the link denotes the relationship between two concept nodes. Of course, the meaning of these
types is simply given by convention, meaning is, as always in MicroPsi agents, only created by
use.

• GT SUB - sublinked nodes are somehow part of the linking node.

• GT SUR - surlinked nodes are somehow the whole to the linking node. sub/sur links
between Concept Nodes are always symmetrical: A sub B implies B sur A.

• GT POR - porlinked nodes are somehow causal successors of the linking node.

39

8. Node net theory

• GT RET - retlinked nodes are somehow causal predecessors of the linking node. por/ret
links between Concept Nodes are always symmetrical A por B implues B ret A. por/ret
links normally have spacio-temporal attributes with details on the causal relation between
the nodes.

• GT CAT catlinked nodes are the category for the linking node.

• GT EXP explinked nodes are exemplars of the linking node. cat/exp links are also always
symmetrical.

Two further gate types for symbolic relations are planned, but have not yet been implemented
as our own agents still don’t need them.

Directional activator nodes

For each standard gate type (see above), there is a directional activator (ACTSUB, ACT SUR,
etc). When activated, the directional activator will activate all gates of it’s type within it’s
nodespace and all nodespaces contained in that nodespace. ”Activate” the gates means set-
ting the gate factors of that gates to 1. As the gate factors for all standard gate types default to 0,
no activation will be propagated from standard gates if no directional activator is active.

Sensors

Sensors are nodes that propagate from their GEN gate the value of some external data source.
Sensors can beconnectedor unconnected. Sensors are connected iff a data source was assigned
to them. Unconnected sensors’ gates values will always be 0.

Actors

Actors are nodes that output the value of their GEN slots to an external data target (indicating
that the agent decided to interact with the world). Actors propagate from their GEN gate the
result of that action. (Between -1, failure, and 1, success). Actors can beconnectedor uncon-
nected. Actors are connected iff a data target was assigned to them. Unconnected actors don’t
do anything if they got activation at the slot. Their gate’s value will always be 0.

General activators

There will be information on general activators in a later version of this document.

General deactivators

There will be information on general deactivators in a later version of this document.

Associators

There will be information on associators in a later version of this document.

40

8.2. What node nets are

Dissociators

There will be information on dissociators in a later version of this document.

8.2.3. NodeSpace modules

NodeSpace modules aremodulesModules are NetEntities with a custom gate calculation func-
tion. (In contrary to nodes, which have a fixed one).

The particular thing about node spaces is that theyareentities andcontainentities. All entities
are contained in node spaces (with one exception, the root node space). Node spaces can contain
node spaces.

A NetEntitiy is called alevel-one-memberof a node space if the entity is directly contained
by the node space. A NetEntity is called amemberof a node space A if it is a level-one-member
of A or of some node space B that is a member of A.

(As you see and as you would have expected: Every entity but the root node space is a member
of the root node space)

Node spaces, as they are entites, can have slots and gates. These can be accessed from within
the space by actor and sensor nodes. Thus you can wrap functionality into nodespaces, with the
spaces’ slots and gates as interface to the rest of the system. The contents of the spaceis the gate
calculation function of the node space (module!).

8.2.4. Native modules

You can program your agents entirely with Nodes. The question then, apparently, is: Why intro-
duce that complicated native module stuff? You’ll know when you try to write programs entirely
made of Nodes: It’s a time-consuming, difficult and annoying task, as complexity increases mas-
sively with every node you add. (The special nodes that control the program always effect all
nodes within a node space, and that of course creates side effects. It’s kind of tricky to get the
system to stay in stable states, and every time you add new subsystems, you have to consider
side effects on all the other parts.) Programs written entirely with nodes are also slow, and so
the native module mechanism provides a convenient way of integrating connectionist/spreading
activation principles with good old declarative programming, the latter to be used for tasks that
are either too complex to do them with nodes or simply of no use if you have them done with
nodes - or both, in most cases.

You’ll normally want to use native modules for all low-level tasks: Programs that the agent
will never need to be aware of don’t need to be written in the ”mentalese” language of the agents
(nodes!). You need node programs only for things that the agent shall be able to reflect upon.

And although it is possible to write programs that execute themselves, even high-level agent
programs will be very likely to be programs that can only be executed by a native module, as it
is clearly better to have one execution mechanism and program data than a lot of programs that
are also the execution engines for themselves.

Understanding native modules is, at any rate, crucial.
Native modules are modules: Entities with any number of slots and gates and a custom gate

calculation function. The difference to node space modules is that this function is not calculated
by entities, but by a Java class.

41

8. Node net theory

Modules are not restricted to the calculation of gates. And just as inside node space modules
may be performed anything that is possible with nodes, inside a native module may be performed
anything that is possible with Java, although not everything is encouraged.

To see whatis encouraged, seeA closer look at native modules.

8.3. The mathematics of node nets

There is a ready-to-use Java implementation of node nets. When trying to understand what it
does and how it works, some people prefer to know the maths behind it all. Besides that, it’s of
course a good thing to have a precise formal definition. So here it is. (This section is a slightly
revised version of material from [9])

8.3.1. Entities, Nodes, Node Spaces, Links

Node nets consist of sets of net entitiesU , nodesandmodules, connected to each other by links
V and to the agent environment by a vector ofDataSourcesandDataTargets.

NN = {U, V,DataSources,DataTargets, fnet}

wherefnet is a propagation function calculating the transition from one state of the node net to
the next.

U = {(id, type, I, O, α, fact, fnode)}

Generally speaking, a net entityu ∈ U consists of a vectorI of slots, a vectorO of gates, an
activationα, an activation functionfact : I → α and a node functionfnode : NN → NN
(there are no real limits to what the node function can do to the net). Theid makes it possible to
uniquely identify a net entity.

Entities come about in differenttypes, such as register nodes, concept nodes and so on (see
above).
Nodes may be grouped intonode spaces:

S =
{
US , DataSourcesS , DataTargetsS , fS

net

}
By mapping theDataSourcesS of a node space to slots, theDataTargetsS to gates and
the local net functionfS

net to an entity function, it is possible to embed a node space into a
single net entity, called anode space module. Thus, hierarchies of node spaces may be cre-
ated. Often, node spaced contain a number of nodes that have special properties, such as
ActivatorsS ⊂ US ;ActivatorsS = {ugateType1 , ..., ugateTypen}. Activators influence the way
activation spreads within a node space. In a nodespace, there can be one Activator for every
gate type (por, ret, sub, sur, cat, exp, sym, ref). The output of the activator is read by the output
activation function of all nodes within the nodespace. By setting activators to zero, activation is
prevented from spreading through the corresponding gates.

42

8.3. The mathematics of node nets

The vector of links between entities is defined as:

V =
{(

ou1
i , iu2

j , w, c, st
)}

Note that nodesu1 andu2 can be connected by more than one link. Links are defined by the
gateou1

i and the slotiu2
j , which they connect, and are annotated by a weightw ∈ R[−1,1] and a

vectorst ∈ R4; st = (x, y, z, t) containing spatial-temporal values.

O = {(gateType, out, θ, amp,min, max, fout)}

Gates provide the output of net entities and consist of an output activationout ∈ R, a threshold
θ, an amplification factoramp, upper and lower boundaries on the activation (min andmax),
and an output activation functionfout : α × O × Activators → out that calculates the values
of the gates, usually by:

out =
{

min (max (amp · α · actgateTypeo ,min) ,max) , ifα · actgateTypeo > θ
0, else

whereactgateTypeo is the output activationout of the activator nodeugateTypeo ∈ ActivatorsS

of the respective node space. By triggering an activator, the spreading of activation from gates
of the particular gate type is enabled.

Input to the entities is provided using an array of slots:

I = {(slotType, in)}

The value of each slotiuj is calculated usingfnet as the sum of its inputs. Let(v1, ..., vk) be the
vector of links that end in a slotiuj to other nodes, and(out1, ..., outk) be the output activations
of the respective connected gates:

iniuj
=

1
k

k∑
n=1

wvncvnoutn

8.3.2. Specific node types

Concept Nodeshave a single slot of the typegen (for ”generic”) and their node activation is
identical with their input activation:α = ingen. Concept nodes have gates of all the standard
types: por, ret, sub, sur, cat, exp, sym, ref and gen. The gen gate, as with all nodes, makes the
input activation directly available of it is above the thresholdθgen – there is no gen activator.

Register Nodes, the most basic node type, have a single slot of the typegenand a single gate
of typegen. The gen gates behaves like in concept nodes, that is:outgen = [amp ·α]max

min , ifα >
θ, 0else; α = ingen.

43

8. Node net theory

Sensor Nodesare similar to register nodes, however, their activationoutgen is computed
from an external variabledataSource ∈ DataSourcesS : outgen = [amp · α]max

min , ifα >
θ, 0else; α = ingen · dataSource.

Actor Nodesare extensions to sensor nodes. Using their node function, they give their input
activationingen to an external variabledataTarget ∈ DataTargetsS . The external value may
be available to other node spaces, or via the technical layer of the agent, the agent environment
(e.g. the world server). In return, an input value is read that represents failure (−1) or success
(1) of the action – this value is returned as a sensor value tooutgen. (Not immediately indeed,
as the action typically takes some time to execute.)

Concept, register, sensor and actor nodes are the ”bread and butter” of node net representa-
tions. Tocontrol node nets (purely with nodes), a number of specific register nodes have been
introduced on top of that.

Activators are special registers that exist in correspondence to the standard gate types of con-
cept nodes in a node space. Their output is read by the output activation function of the concept
nodes within their nodespace. (see above)

General activation nodesare registers that, when active, increase the activationα of all nodes
in the same node space.

General deactivation nodes, as the counterparts to general activator nodes, dampen the acti-
vation of all nodes within the same node space.

Associator nodesare used to establish links between nodes in a node space. This happens by
connecting all nodes with active gates. The weight of the new link calculates as

wt
ui
1uj

2

=
√

wt−1

ui
1uj

2

+ αassociator · associationFactorS · αu1 · αu2

wheret is the current time step, andassociationFactorS ∈ R[0,1] a node space specific con-
stant.

Dissociator nodesare the counterpart of associator nodes; they decrease or remove links
between currently active nodes in the same node space.

44

A. The AEP Java API

The classes and interfaces that are documented at the following URLs are published API classes.
API classes are relatively stable and unlikely to change very much in future releases. At least
there will be special care for backward compatibility when evolving these classes.
This is also true for classes and interfaces directly used by the classes below. (The classes below
are the API ”entry points”)

• http://www.artificial-emotion.de/javadoc/de/artificialemotion/
micropsi/net/AbstractNativeModuleImpl.html

• http://www.artificial-emotion.de/javadoc/de/artificialemotion/
micropsi/net/GateManipulator.html

• http://www.artificial-emotion.de/javadoc/de/artificialemotion/
micropsi/net/AbstractNativeModuleImpl.StructureModificator.html

• http://www.artificial-emotion.de/javadoc/de/artificialemotion/
micropsi/net/InnerStateContainer.html

• http://www.artificial-emotion.de/javadoc/de/artificialemotion/
micropsi/main/TypeStrings.html

• http://www.artificial-emotion.de/javadoc/de/artificialemotion/
comp/agent/aaa/AgentWorldAdapterIF.html

• http://www.artificial-emotion.de/javadoc/de/artificialemotion/
comp/robot/RobotActionExecutor.html

• http://www.artificial-emotion.de/javadoc/de/artificialemotion/
comp/robot/RobotPerceptionExtractor.html

• http://www.artificial-emotion.de/javadoc/de/artificialemotion/
comp/world/objects/AbstractAgentObject.html (Warning: This is still a
somewhat moving target and likely to change in the next versions of the toolkit.)

Beware: There are hundreds of other classes that are not API, but some are. Generally, a good
way of telling API from non-API is asking yourself the following questions:

• Is the class a member of the de.artificialemotion.micropsi package? If it is, it is defini-
tively API. All classes there are published and can be relied on - all that is public inside
these packages is API. Still, you mustnot try to access any protected members by java
reflection or cheating with packages, and there is no use in doing so - if you do, you’ll
cause problems and have a terrible time. You have been warned.

45

http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/net/AbstractNativeModuleImpl.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/net/AbstractNativeModuleImpl.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/net/AbstractNativeModuleImpl.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/net/GateManipulator.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/net/GateManipulator.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/net/GateManipulator.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/net/AbstractNativeModuleImpl.StructureModificator.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/net/AbstractNativeModuleImpl.StructureModificator.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/net/AbstractNativeModuleImpl.StructureModificator.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/net/InnerStateContainer.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/net/InnerStateContainer.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/net/InnerStateContainer.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/main/TypeStrings.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/main/TypeStrings.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/micropsi/main/TypeStrings.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/comp/agent/aaa/AgentWorldAdapterIF.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/comp/agent/aaa/AgentWorldAdapterIF.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/comp/agent/aaa/AgentWorldAdapterIF.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/comp/robot/RobotActionExecutor.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/comp/robot/RobotActionExecutor.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/comp/robot/RobotActionExecutor.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/comp/robot/RobotPerceptionExtractor.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/comp/robot/RobotPerceptionExtractor.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/comp/robot/RobotPerceptionExtractor.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/comp/world/objects/AbstractAgentObject.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/comp/world/objects/AbstractAgentObject.html
http://www.artificial-emotion.de/javadoc/de/artificialemotion/comp/world/objects/AbstractAgentObject.html

A. The AEP Java API

• Is the class mentioned in this document? If it is, it is definitively API.

• Is there good JavaDoc on the class? If there is, it’s likely that the class is API or at least
will become API in the future. But don’t rely.

46

B. Glossary

• Alarms see Meta-Management

• Action MicroPsi agents may have an effect on their environment or their internal rep-
resentations using a basic set of actor nodes. These may be arranged in sequences or
alternatives and organized in hierarchies, thus creating more abstract actions macros and
scripts. The execution of these scripts may be controlled with sensor nodes, which serve
as pre-conditions, post-conditions or suitability measures. Sensors may be grouped into
hierarchies to, thereby representing more abstract situations and objects. Often, such a
sense macro will contain actions and vice versa.
Because active and sensoric schemata are represented as node nets, agents might organize
and rewrite their own behavior scripts.

• Activators are special register nodes that exist in correspondence to the gate types (POR,
RET, SUB, SUR, CAT, EXP, SYM, REF) of concept nodes of a node space. Their output
is read by the output activation function of the respective gate of their node space. By
setting activators to zero, no activation can spread through the corresponding gates.

• Actor nodes are extensions to sensor nodes. Using their node function, they give their
input activation to an external data target. In return, an input value is read that typically
represents failure (-1) or success (1) of the action.

• AEP Artificial Emotion Project. An effort to build cognitive agents based on principles of
the Psi theory, which has lead to a rather generic toolkit for the construction of architecture
for cognitive multi agent systems (not necessarily emotional).

• Affiliation See Social Urges

• Associatornodes are used to establish links between nodes in a node space. This happens
by connecting all nodes with gates having an activation different from zero.

• Calculate/Propagate CycleIn every NetStep, the spread of activation in node nets is
propagated, and the internal functionality of active nodes (activation functions, or code of
native modules) is executed.

• CAT Link type in node nets extending to Psi theory, corresponding to gate in concept
node, denotes is a/member of relationship.

• Certainty Part of annotation of a link. Is not always required, but aids in matching of
representations and reasoning. By default, certainty is 1.

47

B. Glossary

• Cognitive UrgesDirect the cognitive and explorative behavior of an agent according to
Psi theory. Currently consist of urge for uncertainty reduction and urge for acquisition of
competency.

• Concept nodesare the most widespread node type in MicroPsi agent representations.
They have a single slot (GEN) and gates for building hierarchical representations (GEN,
POR, RET, SUR, SUB, CAT, EXP, SYM, REF). Concept nodes replace Drners Quads.

• Data sourceInput interface of node space to agent environment or other node spaces.
Used for sensor nodes (as sensors).

• Data target Output interface of node space to agent environment or other node spaces.
Used for actor nodes (as actuators).

• Decay As a means of forgetting, the links between nodes may decay over time, using
node space specific decay functions. Nodes with links below a certain threshold may be
removed (garbage collection). Usually, links above a certain strength do not decay.

• Disassociatornodes are the counterpart of associator nodes; they decrease or remove
links between currently active nodes in the same node space.

• Drives see Urges

• Emotion In Drners framework, emotion is a set of configurations of the cognitive system
of an individual. Cognitive processes are embedded into the emotional sub-system, and
so emotional configurations influence how an agent perceives, plans, memorizes, selects
intentions, acts etc. Main components of the emotional system are parameters that repre-
sent cognitive urges, situation evaluation and the modulators, like arousal, resolution level
and selection threshold. They control the usage of semantic schemata during perception,
retrieval etc., for instance by limiting search depth and width. The emotional modulation
is designed to allocate mental resources in way that is suitable to a given situation and
reduce the computational complexity of the current task. (Drner/Schaub 1998)

• EXP Link type in node nets extending to Psi theory, corresponding to gate in concept
node, denotes has element relationship.

• GateOutput of a node. Contains value for output activation, threshold, amplification fac-
tor, upper and lower boundaries. The spread of activation through a gate may be restricted
by directional activators (gate type specific).

• Gate Manipulator Programming interface for gates (to change activation, thresholds,
amplification values etc.).

• GEN Link type in node nets loosely according to Psi theory, corresponding to gate in
concept node, used for generic links without directional activation.

• General activation nodesare special nodes with a single slot and gate of type GEN.
When active, they increase the activation of all nodes in the same node space.

48

• General deactivation nodesare the counterpart of general activation nodes; they dampen
the activation of all nodes within the same node space. They are mainly used to gradually
reduce activity in a node space until only the most activated structures remain, or to end
activity altogether.

• Hierarchical categoriesthe similarity of node schemas can be established by a complete
or a partial match. By constraining the depth of the comparison, it is possible to discover
structural similarity, for instance between a human face and a cartoon face. However, the
key to structural similarity is the organization of node schemas into hierarchies (where an
abstract face schema may consist of eye, nose and mouth schemas in a certain arrange-
ment, and can thus be similar to a smiley). Furthermore, many objects can only be classi-
fied using abstract hierarchies. Such hierarchies can be derived mainly in three ways: by
identifying prominent elements of objects (that is, structures that are easy to recognize by
interaction or perception and also good predictors for the object category), by guessing,
and by communication. (Bach 2002)

• HyPercept Hypothesis based perception. According to Drners Psi theory, a mechanism
of perception that works by forming a hypothesis (usually based on former experiences
of the agent, and inspired by context and features of the environment), and then verifying
this hypothesis against the primitive patterns available from the sensors of the agent.

• Links Connect gates of nodes with slots of (usually different) nodes, and may be annotated
with weights, certainty values, spatial/temporal information. Activation spreads through
links. Current link types include GEN, POR, RET, SUR, SUB, CAT, EXP. Of these, POR
and RET, SUR and SUB, CAT and EXP are reciprocal.

• Macro Part of an active schema that is nested within a hierarchy.

• Memory Node nets act as universal data structures for perception, memory and planning.
Even though the Psi theory does not distinguish between different types of memory, we
have found that differentiating special areas (node spaces) helps to clarify the different
stages of cognitive processing.
The links between nodes decay over time (as long as the strength of the links does not
exceed a certain level that guarantees not to forget vital information). The decay is much
stronger in short term memory, and is counterbalanced by two mechanisms:

– usage strengthens the links, and

– events that are strongly connected to a positive or negative influence on the urges of
the agent (such as the discovery of an energy source or the suffering of an accident)
lead to a retro gradient connection increase of the preceding situations.

If a link deteriorates completely, individual isolated nodes become obsolete and are re-
moved. If gaps are the result of such an incision, an attempt is made to bridge it by
extending the links of its neighbors. This process is meant to lead to the exclusion of
unimportant elements from object descriptions and protocol chains.

49

B. Glossary

• Meta-ManagementIt is quite possible that the allocation of processing resources of the
agent does not meet the demands of the changing environment. This is the task of the
meta-management. Because this module is not called very frequently, the agent may fail
to adapt quickly to dramatical events. Drner has proposed a securing behavior that should
be executed by the agent in regular intervals, while Sloman describes a system which he
terms alarms, with the same purpose: to quickly disrupt current cognitive processes if the
need arises. (Sloman 1994) There is no alarm system in MicroPsi yet.

• MicroPsi An agent architecture that attempts to capture the vital aspects of Drners Psi
theory, extending them where deemed necessary. MicroPsi agents are based on the AEP
agent toolkit.

• Modulators Constrain spread of activation in node nets and direct behavior of agents
according to Psi theory.

• Motivation According to the Psi theory, the agent possesses a number of innate desires
(urges) that are the source of its motives. Events that raise these desires are interpreted as
negative reinforcement signals, whereas a satisfaction of a desire creates a positive signal.
Currently, there are urges for intactness, energy (food and water), affiliation, competence
and reduction of uncertainty. The levels of energy and social satisfaction (affiliation) are
self-depleting and need to be raised through interaction with the environment. The cogni-
tive urges (competence and reduction of uncertainty) lead the agent into exploration strate-
gies, but limit these into directions, where the interaction with the environment proves to
be successful.
The execution of internal behaviors and the evaluation of the uncertainty of externally
perceivable events create a feedback on the modulators and the cognitive urges of the
agent.

• Native Module In the current implementation, native modules contain Java code and can
perform any kind of manipulation on the node net. Input and output to native modules is
provided through slots and gates, so that they may act just like any other kind of node.

• NetEntity Part of a node net; a node, node space or native module.

• NetStepSimulation cyle of node nets.

• Neurons Drner suggests using neural networks (with threshold elements) as means of
representation within Psi agents. Since these neurons typically represent objects, features,
situations and often have link weights of just 1 or 0, it may be appropriate to look at
them as semantic networks, Bayesian nets or influence networks. In Drners implementa-
tion, mechanisms for spreading activation have been omitted, and most control structures
supposedly implemented with connectionist means are replaced by procedures in the pro-
gramming language Delphi. In MicroPsi agents, the notion of neurons is replaced by a
more general node net formalism.

50

• Node Netsare the general means of representation in MicroPsi agents. They consist of
net entities and links and contain control structures, sensoric and active schemata, repre-
sentations of plans, goals etc. and interfaces to the environment.

• Node SpaceA collection of net entities (nodes, native modules, node space modules)
including activators, deactivators etc. which are limited to this space. Node spaces may
contain other node spaces (node space modules), so it is possible to build hierarchies and
structured arrangements.

• Node Space ModuleBy linking the data sources of a node space to a set of slots and the
data targets to a set of gates, a node space may be contained in a module that acts just like
a node and may be contained in another node space.

• Perception The agent represents external situations in the same way as hypotheses or
acquired knowledge; this is done in the local perceptual space. To this end, the agent
retrieves hypotheses from previous content in the local perceptual space or from its long
term memory and tests the immediate external percepts against them. This is called hy-
pothesis based perception, or hypercept. If the expectations of the agent fail, and no theory
about the perceived external phenomena can be found, a new object schema is acquired
by a scanning process (accommodation) that leaves the agent with a hierarchical node net.
Abstract concepts that may not be directly observed (for instance classes of transactions
or object categories) are defined by referencing multiple schemas in such a way that their
commonalities, differences or process structure become the focus of attention.

• Planning The planning algorithms given in the current MicroPsi are very simple: given a
goal (derived from a motivational process), the agent tries to find a chain of actions that
has lead in the past from the given situation to the goal situation. If no such automatism is
remembered, its construction is attempted by combining actions. Here, depth and width
of the search are controlled by the modulators.

• Psi theory Theory of emotion, motivation and representation by Dietrich Drner (1999,
2002). Has been partially implemented by Drner in simulated agents (Emos). Psi is not
an acronym of sorts, but stands for the Greek letterΨ, which for some reason is a favorite
with psychologists.

• POR Link type in node nets according to Psi theory, corresponding to gate in concept
node, denotes leads to/causes relationship.

• Quad A memory unit consisting of threshold elements according to Drners Psi theory.
Quads contain a central neuron and usually four auxiliary neurons allowing for spreading
activation (POR, RET, SUR, SUB). In MicroPsi agents, Quads are replaced by concept
nodes.

• REF Link type in node nets loosely according to Psi theory, corresponding to gate in
concept node, denotes refers to relationship (used for linguistic labeling).

• Registernodes are the most basic node type. They consist of a single slot and gate, both
of type GEN, and may act as threshold elements.

51

B. Glossary

• RepresentationObjects, situations, categories, actions, episodes and plans are all rep-
resented as hierarchical networks of nodes. Hierarchies are achieved with different link
types (like SUR, SUB, POR, RET) and are derived from a theory of representation by Klix
(1984). Nodes may be expanded into weighted conjunctions or disjunctions of subordi-
nated node nets, and ultimately bottom out in references to sensors and actuators. Thus,
the semantics of all acquired representations result from interaction with the environment
or from somatic responses of the agent to external or internal situations. (For communi-
cating agents, they may potentially be derived from explanations, where the interaction
partner another software agent or a human teacher refers to such experiences or previ-
ously acquired concepts.)

• RET Link type in node nets according to Psi theory, corresponding to gate in concept
node, denotes comes from/is caused by relationship.

• ScopeNodes controlling the spread of activation or the linking and unlinking of active
nodes are usually limited in scope on the current node space.

• Script Arrangement of POR/RET-linked concept nodes that may be executed sequentially.
Macros and hierarchies can be achieved by adding SUB/SUR linked nodes. With appro-
priate weights and thresholds, conjunctions and disjunctions may be encoded. Scripts
bottom out in actor and sensor nodes. They can represent plans or control structures of
the agent and are executed using a script execution mechanism.

• Script executionNative module for the execution of hierarchical scripts (which are made
up from concept nodes and bottom out in sensor and actor nodes).

• Sensor nodesare similar to register nodes, however, their activation is computed from an
external data source.

• Slot Input of a node. Contains a value that is usually the weighted sum of the activation
of connected gates.

• Somatic UrgesDirect agents to ensure their survival according to the environment. Cur-
rently consist of urges for food, water and intactness.

• Social UrgesDirect agents in their social interactions. Currently restricted to an urge for
affiliation.

• ST Link A link with a spatio-temporal annotation (a four-D vector to denote spatial and/or
temporal relationships between features).

• Structure Modificator Programming interface for manipulating structures in node nets
(such as creating or changing nodes and links).

• SUB Link type in node nets according to Psi theory, corresponding to gate in concept
node, denotes consists of relationship.

• SUR Link type in node nets according to Psi theory, corresponding to gate in concept
node, denotes part of relationship.

52

• SYM Link type in node nets loosely according to Psi theory, corresponding to gate in
concept node, denotes is represented by relationship (used for linguistic labeling).

• Urges Basic drives of an agent according to Psi theory. Lead to motivation and direct
actions of an agent. Urges may be somatic (like hunger, thirst) or cognitive (reduction of
uncertainty, competency).

• Weight Part of annotation of a link. Relevant to spreading activation and summing of
activations in slots.

53

B. Glossary

54

Bibliography

[1] The Eclipse Project, http://www.eclipse.org

[2] Log4j documentation, http://jakarta.apache.org/log4j/docs/index.html

[3] Fundamental modeling concepts, http://fmc.hpi.uni-potsdam.de/

[4] Klix, F. (1984). Über Wissensrepräsentation im Ged̈achtnis. In F. Klix (Ed.): Ged̈achtnis,
Wissen, Wissensnutzung. Berlin: Deutscher Verlag der Wissenschaften.

[5] Dörner, D., Bartl, C., Detje, F., Gerdes, J., Halcour, D., Schaub, H., & Starker, U. (2002).
Die Mechanik des Seelenwagens. Eine neuronale Theorie der Handlungsregulation. Bern,
Göttingen, Toronto, Seattle: Verlag Hans Huber.

[6] Dörner, D., & Schaub, H. (1998). Das Leben von PSI.Über das Zusammenspiel von Kog-
nition, Emotion und Motivation. http://www.uni-bamberg.de/ ba2dp1/psi.htm Dörner, D.
(1999). Bauplan f̈ur eine Seele. Reinbeck: Rowohlt

[7] Braitenberg, V. (1984) Vehicles. Experiments in Synthetic Psychology. MIT Press.

[8] Bach, J. (2002). Enhancing Perception and Planning of Software Agents with Emotion and
Acquired Hierarchical Categories. In Proceedings of MASHO 02, German Conference on
Artificial Intelligence KI2002, (pp. 3-12)

[9] Bach, J., Vuine, R. (2003) The AEP Toolkit for Agent Design and Simulation. M. Schillo
et al. (eds.): MATES 2003, LNAI 2831, Springer Berlin, Heidelberg. (pp. 38-49)

[10] Bach, J., Vuine, R. (2003). The MicroPsi Architecture for Cognitive Agents. Poster, Pro-
ceedings of EuroCogSci03, Osnabrck, Germany. (p. 370)

[11] Bach, J. (2003). Connecting MicroPsi Agents to Virtual and Physical Environments. Work-
shops and Tutorials, 7th European Conference on Artificial Life, Dortmund, Germany. (pp.
128-132)

[12] Bach, J., Vuine, R. (2003). Designing Agents with MicroPsi Node Nets. Proceedings of KI
2003, Annual German Conference on AI. LNAI 2821, Springer, Berlin, Heidelberg. (pp.
164-178)

55

	Introduction
	Installation and Configuration
	What you need
	How to install
	OS-specific issues
	Windows
	Linux
	MacOS X

	Advanced configuration
	Isn't it a plugin?
	The ComponentRunner
	aepconfig.xml

	Getting started
	The AEP framework
	Overview
	The Agent Adaptation API
	The MicroPsi development scenario
	The MicroPsi flexibility test scenario
	The MicroPsi application scenario
	The alternative architecture test scenario
	The node net research/transfer scenario
	The node net application scenario
	The framework-only scenarios

	Changing the world: Perceiving and taking action
	World content
	Interaction and perception

	Writing a WorldAdapter
	Why write a WorldAdapter?
	Writing a WorldAdapter
	Pitfalls: WorldAdapters for node net agents

	Using the RobotWorldComponent

	The User interface
	Overview
	Some basic terminology

	The Mind perspective
	The MindEdit view
	The EntityEdit view
	The LinkageEdit view
	The IncomingLinks view
	The Library view

	The Admin perspective
	Overview
	The RawCom view
	The Log view
	The LocalSystemView

	The NetDebugPerspective
	The Parameter view
	The Log view

	The World perspective

	A closer look at native modules
	Overview
	Creating a native module
	MicroPsi agent projects
	Creating the module
	Possibilities you have in native modules

	Node net theory
	Overview
	What node nets are
	NetEntities
	Nodes
	NodeSpace modules
	Native modules

	The mathematics of node nets
	Entities, Nodes, Node Spaces, Links
	Specific node types

	The AEP Java API
	Glossary

